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Abstract—The goal of this paper is to build a system that
automatically creates synthetic data to enable data science en-
deavors. To achieve this, we present the Synthetic Data Vault
(SDV), a system that builds generative models of relational
databases. We are able to sample from the model and create
synthetic data, hence the name SDV. When implementing the
SDV, we also developed an algorithm that computes statistics at
the intersection of related database tables. We then used a state-
of-the-art multivariate modeling approach to model this data. The
SDV iterates through all possible relations, ultimately creating a
model for the entire database. Once this model is computed, the
same relational information allows the SDV to synthesize data by
sampling from any part of the database.

After building the SDV, we used it to generate synthetic data
for five different publicly available datasets. We then published
these datasets, and asked data scientists to develop predictive
models for them as part of a crowdsourced experiment. By ana-
lyzing the outcomes, we show that synthetic data can successfully
replace original data for data science. Our analysis indicates that
there is no significant difference in the work produced by data
scientists who used synthetic data as opposed to real data. We
conclude that the SDV is a viable solution for synthetic data
generation.

I. INTRODUCTION

An end-to-end data science endeavor requires human
intuition as well as the ability to understand data and pose
hypotheses and/or variables. To expand the pool of possible
ideas, enterprises hire freelance data scientists as consultants,
and in some cases even crowdsource through KAGGLE, a
website that hosts data science competitions. In conversations
with numerous stakeholders, we found that the inability to share
data due to privacy concerns often prevents enterprises from
obtaining outside help. Even within an enterprise, development
and testing can be impeded by factors that limit access to data.

In this paper, we posit that enterprises can sidestep these
concerns and expand their pool of possible participants by
generating synthetic data. This synthetic data must meet two
requirements: First, it must somewhat resemble the original data
statistically, to ensure realism and keep problems engaging for
data scientists. Second, it must also formally and structurally
resemble the original data, so that any software written on top
of it can be reused.

In order to meet these requirements, the data must be
statistically modeled in its original form, so that we can sample
from and recreate it. In our case and in most cases, that form
is the database itself. Thus, modeling must occur before any
transformations and aggregations are applied. For example,
one can model covariates as a multivariate distribution, and
then sample and create synthetic data in the covariates space.

Similarly, for online transactional data, one can extract the
sequence of actions taken by customers, learn a hidden Markov
model, and subsequently sample sequences from it. These
strategies, while important in their own right, involve modeling
data only after it has been aggregated and/or transformed with
a purpose in mind. Whatever synthetic data is produced under
these conditions can only aid that same purpose—for example,
users working with synthetic action sequences can only explore
and build solutions for problems that are defined over them. To
enable a multitude of data science endeavors, we challenged
ourselves to model the database directly, and to do so with no
specific dataset in mind.

In the past, several researchers have focused on statistically
modeling data from a relational database for the purposes of
feature engineering [1] or insight generation [2]. [2] laid a
Bayesian network over a relational data model and learned the
parameters for the conditional data slices at the intersection of
those relations. By extending these two concepts, we develop
a multi-level model with a different aim—not insights, but
rich synthetic data. To do this, we not only have to create a
statistically validated model; we also have to pay attention to
the nuances in the data, and imitate them. For instance, we
treated missing values in a number of different ways, and built
in the ability to handle categorical values and datetime values.

In this paper, we make the following contributions:

1) Recursive modeling technique: We present a method
for recursively modeling tables in the database, allowing
us to synthesize artificial data for any relational dataset.
We call our approach “recursive conditional parameter
aggregation”. We demonstrate the applicability of our
approach using 5 publicly available relational datasets.

2) Creation of synthetic data: We demonstrate that when a
dataset and its schema are presented to our system (which
we call Synthetic Data Vault), users can generate as much
data as they would like post-modeling, all in the same
format and structure as the original data.

3) Enable privacy protection: To increase privacy protec-
tion, users can simply perturb the model parameters and
create many different noisy versions of the data.

4) Demonstration of its utility: To test whether synthetic
data (and its noisy versions) can be used to create data
science solutions, we hired 39 freelance data scientists to
develop features for predictive models using only synthetic
data. Below we present a summary of our results.

Summary of results: We modeled 5 different relational
datasets, and created 3 versions of synthetic data, both with
and without noise, for each of these datasets. We hired 39



data scientists and divided them into groups to solve predictive
problems defined over the 5 datasets. We presented different
groups with different versions of the data, always giving one
group the original data. For each dataset, we compared the
predictive accuracies of features generated from the original
data to the accuracies of those generated by users who were
given the synthetic data. Regardless of which group it came
from, predictive accuracy for a feature is generated by executing
that feature on the original data.

We found no significant statistical difference in the data
scientists’ work: For 11 out of 15 comparisons (>70%), data
scientists using synthetic data performed the same or better
than those using the original dataset.

The level of engagement with synthetic data was high: Even
without being told that they were working with synthetic, noisy
data, data scientists engaged with it just as well as they did
with the original data. Data scientists working on synthetic data
wrote a total of 4313 features on the 5 datasets.

The rest of the paper is organized as follows. In Section ??
we justify our focus on enabling predictive modeling through
synthetic data generation. Section III provides an overview of
our system and its different components. Section IV presents
our modeling methodology in detail. Section V presents the
algorithm to synthesize data from our model. Section VI
presents our experimental setup, results, and conclusions.

II. PREDICTIVE MODELING

Having figured out how to generate synthetic data for
an arbitrary database, we asked whether this could enable
predictive modeling. We chose predictive modeling, rather
than deriving insights based on visualization and descriptive
analytics, for several reasons: its impact, the potential to
widen the foundational bottleneck of feature engineering, and
a number of observations from our own past experiences:

– When given a database, data scientists often only look
at the first few rows of each table before jumping in to
define and write software for features.

– If the data relates to a data scientist’s day-to-day activities,
they will first attempt to understand the fields, and then
quickly begin to write software.

– A data scientist is more likely to explore data in depth
after their first pass at predictive modeling, especially if
that pass does not give them good predictive accuracy.

Keeping these observations in mind, along with the fact that
we can perturb the learned model to generate noisy synthetic
data, we then asked: how much noise can we tolerate? If we
can achieve a similar end result even when a lot of noise is
added, this noise could ensure better protection of the data.
To demonstrate the efficacy of this process, we assembled 5
publicly available datasets, created multiple synthesized sets,
and employed a crowd of data scientists to build predictive
models from these synthesized versions. We then examined
whether there was a statistically significant difference in
predictive model performance among the sets.

III. OVERVIEW

Our system, which we call Synthetic Data Vault, is broken
down into four steps, as illustrated in Figure 1.
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Fig. 1. The SDV workflow: The user collects and formats the data, specifies
the structure and data types, runs the modeling system, and then uses the
learned model to synthesize new data.

Organize: Before supplying the data to the SDV, the user must
format the database’s data into separate files, one for each table.

Specify Structure: The user must specify basic information
about the structure of each table, and provide it as metadata
for the database. This specification is similar to a schema in
an SQL database.

Columns with ID information are special, because they
contain relationship information between multiple tables. If the
ID column of a table references an ID column of another table,
the user must specify that table.

Learn Model: The user then invokes the SDV’s script to
learn the generative model. The SDV iterates through tables
sequentially, using a modeling algorithm designed to account
for relationships between the tables.

For each table, the SDV discovers a structure of dependence.
If other tables reference the current one, dependence exists,
and the SDV computes aggregate statistics for the other tables.
The aggregate statistics are then added to the original table,
forming an extended table. This extended table is then modeled.
It captures the generating information for the original table
columns, as well as all the dependencies between tables.

The SDV uses some simple optimizations to improve
efficiency. It saves all the extended tables and model information
to external files, so that subsequent invocations for the same
database do not perform the same computations unnecessarily.

Synthesize Data: After instantiating the SDV for a database,
the user is exposed to a simple API with three main func-
tions:will

1) database.get_tableThis returns a model for a par-
ticular table in the database. Once the table has been found,
the user can use it to perform the other two functions.

2) table.synth_row:The synth_row function both
synthesizes rows and infers missing data.

3) table.synth_children:The synth_children
function synthesizes complete tables that reference the
current table. By applying this function iteratively on
the newly-synthesized tables, the user can synthesize an
entire database.

The results of both synth_row and synth_children
match the original data exactly. The SDV takes steps to delete
extended data, round values, and generate random text for
textual columns. This results in rows and tables that contain
fully synthesized data, which can be used in place of the
original.



IV. GENERATIVE MODELING METHOD

This section covers the technical details of the SDV’s
modeling phase in the overall workflow presented in Figure 1.
The goal of the generative modeling phase is to build a complete
model for the entire relational database, given only meta files
and tables. Ultimately, the SDV’s database modeling method
builds generative models for individual tables. However, it
performs extra computations to account for the the relationships
between them, using a method called Conditional Parameter
Aggregation (CPA). A high-level overview is provided by
Figure 2.

Metadata
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Extended

tableTable Gaussian Copula

Model
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Fig. 2. An overview of the generative modeling process. Conditional Parameter
Aggregation accounts for foreign key relations across multiple tables. The
Gaussian Copula process calculates the overall table model.

This section is broken into five sections: Section IV-A
reviews the multivariate generative modeling method we use
for a table. This corresponds to the Gaussian Copula and
model steps in Figure 2, and provides a foundation for
our work. Section IV-B describes extending the generative
model to encompass multiple tables. This is called condition
parameter aggregation CPA. The next two sections provide
additional adjustments necessary to make the algorithms more
generalizable. Finally, Section IV-D provides the overall logic
for applying our technique. This means recursively applying
CPA for all tables, in order to model the entire database.

A. Standalone Table Model

We define a standalone table as a set of rows and columns
that we wish to model independently of any other data.
The generative model for a standalone table encompasses all
columns that represent numerical data,1 and it consists of:

• Distributions: The probability distributions of the values
in each column

• Covariances: How the value of a column affects the value
of another column in the same row

The distribution describes the values in a column, and the
covariance describes their dependence. Together, they form a
descriptive model of the entire table.

1) Distribution: A generative model relies on knowing the
distribution shapes of each of its columns. The shape of the
distribution is described by the cdf function, F , but may be
expensive to calculate. A simplistic estimate is to assume the
original distribution is Gaussian, so that each F is completely
defined by a µ and σ2 value. However, this is not always the
case. Instead, we turn to some other common distributions
shapes that are parametrized by different values:

• Truncated Gaussian Distribution: Parametrized by the
mean µ, variance σ2, min, and max values

1Later, we discuss how to convert other types of data, such as datetime or
categorical, into numercial data

• Uniform Distribution: Parametrized by the min and max
values
• Beta Distribution: Parametrized by α and β
• Exponential Distribution: Parametrized by the decay λ

If the column’s data is not Gaussian, it may be better to use
a different distribution. In order to test for this fit, we use
the Kolmogorov-Smirnov test [3], which returns a p-value
representing the likelihood that the data matches a particular
distribution. The distribution with the higher p-value is the
distribution we use to determine the cdf function. Currently, we
decide between truncated Gaussian and uniform distributions,
but we provide support to add other distributions.

Note that parameters represent different statistics for each
distribution. For this reason, the SDV also keeps track of the
type of distribution that was used to model each column. This
lets the SDV know how to interpret the parameters at a later
stage. For example, if the distribution is uniform, then the
parameters represent the min and max, but if it’s Beta, then
they represent α and β.

2) Covariance: In addition to the distributions, a generative
model must also calculate the covariances between the columns.
However, the shape of the distributions might unnecessarily
influence the covariance estimates [4].

For this reason, we turn to the multivariate version of the
Gaussian Copula. The Gaussian Copula removes any bias that
the distribution shape may induce, by converting all column
distributions to standard normal before finding the covariances.
Steps to model a Gaussian Copula are:

1) We are given the columns of the table 0, 1, . . . ,n, and their
respective cumulative distribution functions F0, . . . ,Fn.

2) Go through the table row-by-row. Consider each row as a
vector
X = (x0,x1, . . . ,xn).

3) Convert the row using the Gaussian Copula:
Y =

[
Φ−1 (F0 (x0)) , Φ−1 (F1 (x1)) , . . . , Φ−1 (Fn (xn))

]
where Φ−1(Fi(xi)) is the inverse cdf of the Gaussian
distribution applied to the cdf of the original distribution.

4) After all the rows are converted, compute the covariance
matrix, Σ of the transformed values in the table.

Together, the parameters for each column distribution, and
the covariance matrix Σ becomes the generative model for that
table. This model contains all the information from the original
table in a compact way, and can be used to synthesize new
data for this table.

B. Relational Table Model

In a relational database, a table may not be standalone if
there are other tables in the database that refer to it. Thus, to
fully account for the additional influence a table may have
on others, its generative model must encompass information
from its child tables. To do this, we developed a method called
Conditional Parameter Aggregation (CPA) that specifies how
its children’s information must be incorporated into the table.
Figure 3 shows the relevant stage of the pipeline.

This section explains the CPA method. CPA is only
necessary when the table being processed is not a leaf table.
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Fig. 3. Aggregating data from multiple child tables creates an extended table
that accounts for the original relations.

Current table Conditional data Conditional parameters

ID
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Covariance: ΣB=
B33B43

B34B44

Distributions: [(µ3, σ3
2), (µ4, σ4
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Covariance: ΣA=
A00A10A20

A01A11A21

A02A12A22
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2), (µ1, σ1

2), (µ2, σ2
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Covariance: ΣC=

Distributions: [(µ5, σ5
2), (µ6, σ6

2)]
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Fig. 4. An illustration of CPA for a row in table T with primary key
“33”. Tables A, B, and C refer to table T , so the lookup yields 3 sets
of conditional data. Each is modeled using the Gaussian Copula, yielding
conditional parameters.

This means there is at least one other table with a column that
references rows in the current one. CPA comprises of 4 steps:

1) Iterate through each row in the table.
2) Perform a conditional primary key lookup in the entire

database using the ID of that row. If there are m different
foreign key columns that refer to the current table, then
the lookup will yield m sets of rows. We call each set
conditional data. Figure 4 illustrates such a lookup that
identifies m = 3 sets of conditional data.

3) For each set of conditional data, perform the Gaussian
Copula process. This will yield m sets of distributions,
and m sets of covariance matrices, Σ. We call these values
conditional parameters, because they represent parameters
of a model for a subset of data from a child, given a
parent ID. This is also shown by Figure 4.

4) Place the conditional parameters as additional values for
the row in the original table.2 The new columns are called
derived columns, shown in Figure 5.

5) Add a new derived column that expresses the total number
of children for each parent.

The extended table contains both the original and derived
columns. It holds the generating information for the children
of each row, so it is essentially a table containing original
values and the generative models for its children. The SDV
writes a the extended table as a separate CSV file, so we do
not have to recalculate CPA for subsequent invocations of the

2Some values repeat because Σ = ΣT We drop the repeats to save space.

ID

33

T0 T1 T2 T3 A00 A01 C66
µ0 σ0

2 σ6
2... ...

Original columns

Extended table

Covariances Distributions

Fig. 5. The result of CPA. Every lookup for a row yields a value, such as µ5
or B43. The values form their own columns, resulting in an extended table.

Original Column Type Replaced Column(s) Type
Categorical Number
Datetime Number
Number w/Missing Values Number & Categorical
Categorical w/Missing Values Categorical & Categorical
Datetime w/Missing Values Datetime & Categorical

TABLE I. CONVERSIONS THAT MUST BE MADE WHEN PRE-PROCESSING.
IF MULTIPLE DATA TYPES ARE LISTED, IT MEANS THAT MULTIPLE

COLUMNS ARE CREATED FROM THE ORIGINAL COLUMN.

same database.

Subsequently, we can use Gaussian Copula process to create
a generative model of the extended table. This model not only
captures the covariances between the original columns, but
the dependence of the conditional parameters on the values in
the original columns. For example, it includes the covariance
between original column T0 and derived column µ2

5.

C. Pre-Processing

Both Gaussian Copula and CPA assume there are no missing
entries in the column, and that the values are numerical. When
either of assumptions is false, a pre-processing step is invoked.
This step ultimately converts a column of one data type into
one or more columns of another data type, as summarized by
Table I.

Note that some data types might require multiple rounds
of pre-processing. For example, a column that is a datetime
with missing values is first converted into two columns of type
categorical and datetime. Then, those resulting categorical and
datetime columns are further converted into number columns.

1) Missing Values: Missing values in a column cannot
simply be ignored because the reasons for which they are
missing may reveal some extra information about the data. As
an example, consider a table representing people with a column
called weight, which is missing for some rows. The reasons
for missing data falls into one of three categories, so identified
by the statistical analysis community [5]:

– Missing not at random: The data is missing because
of what it’s supposed to be. Perhaps people who are
overweight chose not to disclose their weight, so knowing
that the cell is missing probably means the weight is high.

– Missing at random:3 The fact that the item is missing

3We realize that this is a confusing name. Think of missing at random to
mean that a random subgroup decided not to supply data.



is linked with some other piece of data in that row. For
example, perhaps a majority of females did not disclose
their weight. So knowing that a person is female makes
it more likely that the weight column will be missing.

– Missing completely at random: The fact that the item is
missing tells us nothing about the structure of the rest of
the data. For example, the database admin accidentally
deleted some of the weights, randomly (oops).

In the first 2 cases, knowing that the value is missing
provides further information about the data itself. Therefore,
it is important to model missing values overall. Furthermore,
a high level goal of the SDV is to model and synthesize data
that mimics the format of the original. If the original data has
some missing values, the synthesized must too. Modeling the
null values solves this problem.

In the final case, it is not imperative that the missing values
are considered from a numerical perspective, but the SDV does
not know this may be the case. Hence, even though the third
case is missing completely at random, the SDV must make a
model.

When the SDV encounters any column that has at least 1
missing value, it replaces the column with two columns:

– A column of the same type, with missing values filled-in
by randomly choosing non-missing values in the same
column.

– A categorical column that contains “Yes” if the original
data was present, and “No” if the data was missing for
that row.

This solution ensures that the original column contains
values for all rows, but also accounts for the fact that some
were originally missing.

2) Categorical: Categorical columns may exist originally
in the table, or may be a result pre-processing missing values.
Categorical data also cannot be modeled by the Gaussian Copula
or CPA.

When it encounters a categorical column, the SDV replaces
it with a numerical column containing values in the range [0, 1].
To do this, it uses the following method:

1) Sort the categories from most frequently occurring to least.
2) Split the interval [0, 1] into sections based on the cumula-

tive probability for each category.
3) To convert a category, find the interval [a, b] ∈ [0, 1] that

corresponds to the category.
4) Chose value between a and b by sampling from a truncated

Gaussian distribution with µ at the center of the interval,
and σ = b−a

6 .

Figure 6 shows a visual depiction of this conversion.

Note that while Gaussian distributions are completely
defined by µ and σ2 , the same is not true for these categorical
distributions. Instead, they require new parameters representing
the proportions of each of the c categories, p0, p1, . . . , pc with
0 ≤ pi ≤ 1 and

∑
i

pi = 1. These are the conditional parameters

that are put in the extended table for categorical columns.4

4We save p0 . . . pi−1 because the last proportion pi can be calculated from
the others.

Categorical Numerical

x
“Yes”
“No”

“Maybe”

Pr (x)
0.4
0.5
0.1

“No”                    “Yes”        “Maybe”

0                            0.5                  0.9           1 

Fig. 6. The method that converts categorical variables to numerical data. Based
on the proportions, “No” is assigned the interval [0, 0.5]; “Yes” is assigned
[0.5, 0.9], and “Maybe” is assigned [0.9, 1]. Each occupies its allocated interval
with a Gaussian distribution.

Choosing a value using a Gaussian distribution gives dense
areas at the center of each interval, but ensures that the numbers
are essentially different. The inverse is also easy to compute:
Given a value v ∈ [0, 1], we find the interval that v corresponds
to and return its category.

3) Datetime: Finally, many tables contain information
containing times or dates that is represented as text. The SDV
replaces such columns with numerical values. This is relatively
straightforward, as any timestamp can be expressed as the
number of seconds past Epoch (January 1, 1970). If timestamp
represents a time before Epoch, then the numerical value is
negative (number of seconds until Epoch).

D. Database Modeling

This final section describes the overall system by providing
control logic for modeling an entire database. This consists of
applying CPA recursively to calculate the model of the entire
database.

We let D represent a database consisting of many tables,
T . The relations between the tables are known, so we let C(T )
represent the set of T ’s children, and P(T ) represent the set
of T ’s parents. Finally, we assume that our logic has access
to CPA and pre-processing method we have described. Other
mathematical functions include the cdf function, F , and the
covariance Σ.

The CPA method works across a parent-child relationship.
However, the children may have more children, so we must
apply the CPA recursively down all of the parent’s descendants.
We call this recursive approach Recursive Conditional Parameter
Aggregation, or RCPA. Algorithm 1 provides the logic for
RCPA.

Algorithm 1 A recursive application of CPA to add derived
columns to T .

1: function RCPA(T )
2: for all C ∈ C(T ) do
3: RCPA(C)
4: T ← CPA(T )
5: T ← PREPROCESS(T )

Note that the CPA method returns the extended table. Line
4 saves the extended table as T . Finally, line 5 pre-processes
T to convert the values into numerical data. The base case of
this algorithm is for leaf tables, tables where C(T ) = ∅. Such
tables are guaranteed by our non-circularity constraint.



When the SDV creates the overall model, it applies RCPA
and uses the results to calculate the database model. The
SDV’s modeling algorithm calls the RCPA method on all tables
without parents. Because RCPA is recursive, this ensures that all
tables in the database ultimately go through the CPA method.
Afterwards, it calculates the cdf functions, given by F , as
well as the covariances by using the Gaussian Copula for all
extended tables. The logic is given in Algorithm 2.

Algorithm 2 The overall modeling logic for the SDV for
database D.

1: function SDV-MODEL(D)
2: for all T ∈ D s.t. P(T ) = ∅ do
3: RCPA(T )
4: cdf ← ∅
5: cov ← ∅
6: for all T ∈ D do
7: cdf ← cdf ∪ F (T )
8: cov ← cov ∪ Σ(Φ−1(F (T ))

9: return cdf , cov

The algorithm saves and returns all the cdf and covariances
of the tables. The cdf functions are calculated using the table
returned by the extend function. The covariance is calculated
after applying the Gaussian Copula to that table. Together, the
cdf and covariances form the generative model for database D.
When this function returns, the user can control the amount
and type of data to synthesize.

In summary, the overall database model saves the following
for every table:

– The extended table (calculated by Algorithm 1)
– The cdfs of columns in the extended table (returned by

Algorithm 2)
– The covariances of columns in the extended table (returned

by Algorithm 2)

V. DATA SYNTHESIS

This chapter presents the details of the last step in the
SDV’s workflow: Synthesizing data based on the calculated
database model.

We break up the synthesis into two categories:

– Model-Based: The user wishes to synthesize data relying
on the model that has been computed. For example, a
user may want to synthesize the entire database of their
customer information.

– Knowledge-Based: The user already has some informa-
tion about the data, and wishes to synthesize the rest it.
For example, the user may want to synthesize information
for particular types of customers (female, age 22, etc.).

The SDV can perform both types of synthesis. Each section
of this chapter provides details for the two cases. The final
section presents our API endpoints.

A. Model-Based

Model-based synthesis is based on being able to sample data
from the calculated distribution and covariances. The modeling

was learned using pre-processed numerical values that represent
numbers, datetime, categories, and missing values. Once we
sample from the model, we can factor in the primary key and
foreign key relations to synthesize tables, and ultimately the
entire database.

1) Sampling Numerical Values: All numerical values can be
sampled from the distributions and covariances of the columns.
Call the set of cdf functions F , and the covariance matrix Σ.
The method to sample numerical values is given by algorithm 3.
Assume that there are n columns, so that |Σ| = |F | = n.

Algorithm 3 Sampling numerical values from distribution and
covariances of the columns.

1: function SAMPLE(F , Σ)
2: v ← random n-dimensional Guassian vector
3: Find Cholesky decomposition, LLT = Σ
4: u← Lv
5: x← [F−1

0 (Φ(u0)),F−1
1 (Φ(u1)), . . . F−1

n (Φ(un))]
6: return x

Line 4 of this algorithm uncovers a vector, u, in Copula
space. Then, line 5 converts it back to the original space by
applying the inverse of the Gaussian Copula. The returned
vector, x, provides a value for all columns that were converted
to numerical data (numbers, categorical, datetime, and missing
values).

Once the numerical value is returned, we can post-process
it to form data that looks like the original. This is accomplished
by:

– Converting back from numerical values to datetime or
categorical values

– Removing values for columns that were not originally in
the table. This includes all derived columns from CPA.

– Making values blank if they are supposed to be missing
by looking at the binary “Yes” or “No” value that is
sampled.

2) Row Synthesis: Overall row synthesis relies on sampling.
We use two separate methods depending on if the row does or
does not have any parents.

To synthesize a row with no parents (and therefore, no
foreign key references), we use the overall cdfs and covariance
computed for its table, TF and TΣ. To synthesize a row with
a parent, we recall that its parent row, p, has conditional
parameters that describe the cdfs and covariances for its children,
pF and pΣ. These are the values we use to generate the child.
Both methods are shown in Algorithm 4.

The first function, MAKEROWFROMTABLE expects an
extended table T as input. This can be either the original
extended table, or a synthetic version of the extended table.
The second function MAKEROWFROMPARENT expects a single
row, p, containing all values from the derived columns as input.
Similar to the first function, p can be either an original row
or a synthesized row. Note that both returned values require
post-processing to look like the original version of the data.

3) Database Synthesis: Synthesizing the entire database
just consists of synthesizing multiple rows and child rows
recursively. We begin with a table that has no parents, and call



Algorithm 4 Making a row based on information in the table
T or in the parent row p.

1: function MAKEROWFROMTABLE(T )
2: id← random unique ID value
3: x← SAMPLE(TF , TΣ)
4: return [id, x]
5:
6: function MAKEROWFROMPARENT(p)
7: id← random unique ID value
8: foreign key ← ID of p
9: x← SAMPLE(pF , pΣ)

10: return [id, foreign key, x]

the
MAKEROWFROMTABLE to generate rows for that table. Using
the rows from that table, we can create the children. Recall that
each parent row, p, also stores the number of children it contains,
pn. We can use this number to call MAKEROWFROMPARENT
the appropriate number of times. Finally, we recurse to
synthesize the children of those children until the entire database
is synthesized. The logic is shown by Algorithm 5.

Algorithm 5 The overall database synthesis logic for the SDV.
1: function SDV-SYNTHESIZE(D)
2: for all T ∈ D s.t. P(T ) = ∅ do
3: repeat
4: row ← MAKEROWFROMTABLE(T )
5: MAKECHILDRENROWS(row)
6: until reached user-defined threshold
7:
8: function MAKECHILDRENROWS(p)
9: if p has children then

10: repeat
11: child← MAKEROWFROMPARENT(p)
12: MAKECHILDRENROWS(child)
13: until reached pn children

We envision that a majority of use-cases will be model-
based. They will require the user to synthesize the entire
database, or a subset of tables in those databases.

B. Knowledge-Based

In this section, we briefly describe algorithms we use if
the user wants to synthesize data based on prior knowledge
they already have. For example, if user is synthesizing data
for internally testing an application, they may realize that the
application needs a balance of values. As a result, the user
may decide to synthesize rows for underrepresented female
customers only.

This requires two modifications from the model-based
method. First, the sampling method from Algorithm 3 no longer

works because some of the values included in F and Σ have
already been observed. This requires us to perform a special
update to uncover a new F ′ and Σ′ for just the unobserved
data. Second, it requires us to infer what the parent might be
based on the value that the user provides.

1) Sampling Updates: If some values are already observed
and inputted by the user, then original sampling will not work by
itself, because it will return synthesized values for all columns.
To account for observed data, it is necessary to update update
the Σ matrix, as well as the mean vector µ. Initially, µ = 0
due to the Gaussian Copula process.

Let k represent all the observed (known) variables, and u
represent the unobserved (unknown) variables the user wishes
to synthesize. Then we can rearrange the Σ matrix and µ vector
to bring all the unknown variables to the top:

Σ =

[
Σuu Σuk

Σku Σkk

]
µ =

[
µu

µk

]
=

[
0
0

]
With this configuration, the SDV can update Σ and µ with

the known observations to get a new Σ′ and µ′ for just the
unknown.

Σ′ = Σuu − ΣukΣ−1
kk Σku

µ′ = µu + ΣukΣ−1
kk (obs− µk)

= ΣukΣ−1
kk obs

Where obs is the user-inputted vector containing the known
values. Note that the Σ′ matrix has dimensions |u| × |u| and
the µ′ matrix has exactly |u| elements. This is because they
only describe the relations for the columns with unobserved
values.

Now, the SDV knows the new Σ′ and µ′, along with the
corresponding cdf functions for the unknown variables Fi, i ∈
u. These new values can be used in the sampling algorithm
(Algorithm 3) with a slight modification: In step 4, we add the
µ to the vector u. This will return all the values in the row that
contain numerical information, some of which is post-processed
back into categorical or datetime information. However, it does
not include foreign key information, which is why we need to
perform inference to find the parent.

2) Parent Inference: If the user has observed certain values
for a row and the row has parents, then it is necessary for us
to infer what the parent row may be.

Recall that each parent row, p contains conditional param-
eters that describe the covariances, pΣ, and cdfs, pF , of its
children, so the problem of picking a foreign key simplifies into
a log likelihood estimate. For the given data, x, the probability
of x belonging to some parent p depends on pΣ and pF . This,
in turn, is described by the Gaussian Copula:

− log (Lp(x)) = − log ΦpΣ

[
Φ−1 (pF0

(x0)) , Φ−1 (pF1
(x1)) , . . . , Φ−1 (pFn

(xn))
]



The SDV chooses a parent row of x from a weighted
distribution of − log (Lp(x)), ∀p. The foreign key of x is the
primary key of parent p.

Note that the value Φ−1 (pFi
(xi)) = ±∞ if pFi

(xi) = 1 or
0, making the overall log likelihood approach 0. This happens
when the child’s data is out of bounds for a parent. For example,
if the conditional parameters in p define min and max and
the observed row is not in the interval, then p is not a good
candidate for a parent.

The overall SDV is able to perform many types of synthesis
and inference based on a combination of all the algorithms
presented in this section. Given any set of parent or children
rows and columns, the SDV can ultimately synthesize the
missing values and return them to the user in the same format
as the original table.

C. API Endpoints

When the SDV is ready for the synthesis stage, it provides
the user with a database object, from which the user can ac-
cess individual tables with database.get_table(name).
The table object is used for the synthesis.

We have packed both model-based and knowledge-
based synthesis in two synthesis endpoints. The first is
table.synth_row, that allows the user to synthesize a
full row based on the table or its parent rows, while also
performing updates based on observed values. The second is
table.synth_children, that allows the user to generate
all children based on a parent table. This method is a convenient
packaging of the MAKEROWFROMPARENT algorithm that
allows the user to easily synthesize full tables and databases.

1) table.synth_row: If they are synthesizing a full
row, the user can just call the synth_row function without
any arguments. This generates all of the modeled data. The
SDV generates a unique primary key, as well as any textual
data that is not modeled. As a final step, the SDV formats
the data to mimic the original. This means performing the
following checks and transformations:

1) If the column <x> has a corresponding categorical column
?<x> check its value. If ?<x> = “NO” then the value
should be missing. Set the value of <x> to null.

2) Remove all columns that were not in the original table.
3) If the original column was a datetime, take the numerical

value and convert it back to a datetime with a user-provided
time regex.

4) If the original column was a category, perform the
transform from Section IV-C2 in reverse to recover the
correct category.

As keyword arguments, the user can input any observed
values for columns that exist in the table. The SDV performs
the appropriate inference to synthesize a full row based on
the input. These can include derived columns too, because
derived columns are modeled by the SDV. Table II shows
some examples.

2) table.synth_children: When calling the
synth_children function, the SDV synthesize entire
tables that represent children of the current table. The number

Command English Description
customer.synth_row() Synthesize a completely new customer
customer.synth_row(gender=F) Synthesize a female customer
customer.synth_row(?weight=No) Synthesize customer with missing weight

TABLE II. EXAMPLE COMMANDS USING THE SYNTH_ROW FUNCTION
TO CREATE NEW STORES. ORIGINAL COLUMNS AND DERIVED COLUMNS

CAN BE INPUTS TO THE SYSTEM.

of children generated for each unique primary key of the table
are based on the value of the derived count column.

This function completely generates the all the columns of
the children table, including any other foreign key constraints
that the children may have. This function is intended to
help the user generate entirely new databases. The user first
calls synth_row on every row in the parent table, and the
synth_children recursively until the entire database is
synthesized.

This meets our usability for the SDV: Provide a simple
interface for the user that gives them control to synthesize data
at any granularity. The cell and row granularities are covered
by the synth_row method, while the table and database
granularities are covered by synth_children.

VI. EXPERIMENTAL SETUP

In this section, we describe the experimental setup we used
to validate the SDV’s ability to synthesize realistic data. Our
experiments evaluate the SDV in terms of its effectiveness at
scaling Data Science Efforts without the need to share real
data.

To demonstrate this, we designed a crowdsourcing exper-
iment. The overall goal was to test whether data scientists
working with synthesized data could generate valuable features
just as easily as they would on the original data. In order to
test this, we found publicly available relational datasets with
prediction problems for a particular column. For each dataset,
we performed the following steps:

1) Run the SDV on the dataset to create the generative model.
2) Use the model to synthesize data with varying degrees of

noise.
3) Hire data scientists to solve prediction problem with

a particular version of the dataset (synthesized or the
original).

This section describes the experimental process. We provide
details about the datasets and the methods used to synthesize the
data, and we describe the experimental setup, with 4 conditions.

A. Datasets

We used a total of 5 relational datasets in the experiment.
Two came from an online relational dataset repository [6], and
three came from Kaggle [7]. Table III provides a summary of
each dataset. The prediction problem for each of the datasets
was turned into a classification problem by discretizing the
target column’s values, if they weren’t originally categorical.

The rest of this section provides details about the data and
the prediction problems for each of the datasets.

Biodegradability: The first dataset describes various chemical
compounds in terms of molecules, atoms, and bonds [8]. The



Dataset Name Source # Tables # Classes # Exemplars
Biodegradability Relational Repo 5 5 249
Mutagenesis Relational Repo 3 2 145
Airbnb Kaggle 4 12 5000
Rossmann Kaggle 2 8 1017209
Telstra Kaggle 5 3 7381

TABLE III. SUMMARIES OF THE FIVE RELATIONAL DATASETS USED FOR
THE CROWDSOURCING EXPERIMENT. THE FINAL COLUMN REFERS TO THE

NUMBER OF CLASSES THAT THE PREDICTION PROBLEM ENCOMPASSES.

prediction problem is the biodegradability of each molecule
in water, as measured by the column logp in the Molecule
table. The logp value describes the half-life of the biodegra-
dation for the molecule. For this experiment the logp values
were discretized into 5 classes, and the objective was to predict
the class to which the molecule belongs. Figure 7 presents
the schema of this data. To create a synthetic database for

Molecule
molecule_id

activity
logp

mWeight
activityNorm

logpNorm
mWeightNorm

Primary Key
Number

Categorical
Number
Number
Number
Number

Atom
atom_id

molecule_id
type

Primary Key
Foreign Key
Categorical

Bond
atom_id
atom_id2

type

Foreign Key
Foreign Key
Categorical

gMember
atom_id
group_id

Foreign Key
Foreign Key

Group
group_id

type
Primary Key
Categorical

Fig. 7. The schema for the biodegradability dataset. Molecules consist of
multiple atoms. Two atoms are joined by bonds, and multiple atoms can be
part of an atom group.

this prediction problem, the SDV synthesizes each group in
turn: first new molecules, then new atoms, and finally new
bonds and group members. (Note that is it is not necessary to
synthesize new groups, because a row in Group is not a child
of molecule.)

Mutagenesis: Similar to the biodegradability dataset, the
mutagenesis dataset [9] is also related to chemical compounds
described by molecules, atoms, and bonds as shown by Figure 8.

Molecule
molecule_id

ind1
inda
logp
lumo

mutagenic

Primary Key
Number
Number
Number
Number

Categorical

Atom
atom_id

molecule_id
element

type
charge

Primary Key
Foreign Key
Categorical
Categorical

Number

Bond
atom_id
atom_id2

type

Foreign Key
Foreign Key
Categorical

Fig. 8. The schema for the mutagenesis dataset. The overall structure is
the same as for biodegradability, but there is no gMember or Group tables
associated with the dataset.

The objective of this prediction problem was to predict the
mutagenic column in the Molecule table. "Mutagenicity"
refers to the ability of a chemical to cause mutations in a strand
of DNA. Thus, the mutagenic column is binary, and contains
either a ‘yes’ or ‘no’ value. Creating synthetic data was
straightforward for this SDV: create new molecules, new atoms
for those molecules, and new bonds for those atoms. Thus,
all three tables needed to be synthesized for the prediction
problem.

Airbnb: The Airbnb datasets comes from a Kaggle competition
[10] hosed by the lodging site Airbnb [11]. It consists of web
access log data from each of its users, as described in Figure 9.

The prediction problem for this dataset is
country_destination from the Users column.

This represents the country that a particular user booked
a lodging for. A total of 10 popular countries are labeled
using a shortform (for example ‘ES’ for Spain), while an
11th category called ‘other’ encompassed all non-popular
countries. Finally, a 12th category, labeled ‘NDF’ (No
Destination Found) indicated that the user did not end up
booking lodging using the site. To create synthetic data for this

Fig. 9. The schema for the Airbnb dataset. Each "user" is an account made
on Airbnb, and each session describes a particular access made to the website.
The Countries table provides general information about the country, while
age_gender_bkt provides information about people traveling to those
countries.

prediction problem, the SDV synthesized new users, and then
synthesized new sessions for those users. It was not necessary
to synthesize Countries because it was the parent table
of the table containing the prediction problem. It was also
unnecessary to synthesize age_gender_bkts because it
was not a child of Users.

Rossmann: Kaggle’s Rossman Store Sales dataset comes from
another competition [12] based on historic sales data for
different stores in the franchise [13]. The Rossmann franchise
is one of the largest drug store companies in Germany, and the
dataset provided information about each individual store, as
well as weekly details about it. This is described in Figure 10.

Store
Store

SoreType
Assortment

CompetitionDistance
CompetitionOpenSinceMonth
CompetitionOpenSinceYear

Promo2
Promo2SinceWeek
Promo2SinceYear
PromoInternal

Primary Key
Categorical
Categorical

Number
Number
Number

Categorical
Number
Number

Categorical

Train
Store

DayofWeek
Date
Sales

Customers
Open
Promo

StateHoliday
SchoolHoliday

Foreign Key
Categorical
Datetime
Number
Number

Categorical
Categorical
Categorical
Categorical

Fig. 10. The schema from the Rossmann Store dataset. Each store is a
different store location of the Rossmann franchise, and each row in Train
corresponds to a particular day in the store.

The prediction problem was the ‘Sales’ field in the
Train table, that represented the total revenue made by the
store in that day. Because this was a continuous variable, it was
discretized into 8 bins. Creating a synthetic version of the data



Group Biodegradability Mutagenesis Airbnb Rossmann Telstra
0 control table noise key noise no noise control
1 no noise key noise control table noise no noise
2 table noise control no noise key noise table noise
3 key noise no noise table noise control key noise

TABLE IV. THE VERSIONS OF EACH DATASET THAT WERE AVAILABLE TO EACH EXPERIMENT GROUP. WHILE THIS SETUP MAY BE BIASED TO SOME
ORDERING EFFECTS, IT ENSURES THAT A SINGLE GROUP RECEIVES DIFFERENTLY SYNTHESIZED VERSIONS OF DIFFERENT DATASETS.

Train
id

occasion
fault_severity

Foreign Key
Categorical
Categorical

log_feature
id

log_feature
volume

Foreign Key
Categorical

Number

event_type
id

event_type
Foreign Key
Categorical

resource_type
id

resource_type
Foreign Key
Categorical

severity_type
id

severity_type
Foreign Key
Categorical

Fig. 11. The schema for the Telstra dataset. Each column named of ‘id’
represents a location and time. The information is split up by tables with
meta-information about the event, log, resources, and severity of a possible
network outage.

meant synthesizing different stores first, and then synthesizing
the rows in Train for each of those stores.

Telstra:The final dataset was from a Kaggle competition
focused on a dataset from Telstra [14], a telecommunications
service from Australia that provides mobile phones and
broadband internet. The layout of the dataset is described by
Figure 11.

The prediction problem is to classify the
‘fault_severity’ column of the Train table. This is
either ‘0’ for no network outage, ‘1’ for a few outages, or
‘2’ for many outages.

To create a synthesized version for this data, it was only
necessary to synthesize new rows of the Train table, because
this table had no children.

B. Crowdsourcing Experiment Setup

For each dataset, the SDV created three versions of data,
each with a different noisy condition. These conditions were:

– Control: The data scientist is given the original version
of the dataset.

– No Noise (Synthesized): The data scientist is given the
synthesized output from the SDV’s algorithm.

– Table Noise (Synthesized): The data scientist is given
synthesized output from the SDV’s algorithm, with noise
introduced by taking every covariance value, σij , i 6= j
and halving it, effectively reducing the strength of the
covariance.

– Key Noise (Synthesized): The data scientist is given
synthesized output from the SDV’s algorithm, with noise

introduced by randomly sampling a primary key for the
foreign key relation instead of performing an inference.

Data scientists with some experience analyzing data were
hired for the experiment. These data scientists were assigned
to one of four groups, which determined the versions of the
datasets. This is specified by Table IV.

All data scientists were given a briefing in which they
were told to write complex features for each of the datasets.
We used Feature Factory5 as the interface for conducting
the experiment. Each dataset was exposed to the subjects as
a separate iPython notebook. The notebook contained some
background information about the domain, as well as access
to a variable dataset that contained a list of table objects
belonging to the dataset.

Data scientists were not told which version of the data they
were given. In order to test their features, they were provided
with a method called cross_validate that automatically
computed their features and returned an accuracy score based
on their version of the dataset. Feature Factory saved finished
and submitted scripts, which we used for our analysis.

VII. RESULTS

We recruited a total of 34 data scientists via the freelance
website UPWORK. They were divided into groups, and were
presented the five datasets as per Table IV. Each group had
at least one control dataset. In Table VII, we present the total
number of features written by the data scientists in a group for
a dataset.

The two questions we wished to explore when interpreting
these features were:

– Accuracy: was there a difference in the crowd’s predictive
accuracy when they were given original vs. synthetic data?

– Qualitative findings: Did the data scientists using synthetic
data describe themselves as feeling confused?

Group 0 Group 1 Group 2 Group 3
Datasets f s f s f s f s

Airbnb 374 9 309 8 38 7 209 6
Telstra 2369 6 122 5 413 2 2085 6

Biodegrad. 26 9 48 6 8 5 35 5
Mutagenisis 216 8 150 5 7708 6 286 3

Rossman 176 6 118 5 35 6 218 10
TABLE V. NUMBER OF DATA SCIENTISTS, s, WHO WROTE FEATURES
FOR A PARTICULAR DATASET AND THE TOTAL NUMBER OF FEATURES, f ,

THEY WROTE.

5An interactive i-python based platform hosted on Amazon. The discussion
of the platform specifics is beyond the scope of this paper



A. Accuracy

A chief question we wanted to address was: did the synthetic
dataset affect the quality of the features generated in terms
of predictive accuracy? Was there any significant difference
between the features generated with synthetic data and those
generated with the original dataset? To test this, we followed
these steps:

– We computed every feature script written by a data scientist
on the original training dataset (the control).

– Once the feature was extracted, we computed its predictive
accuracy by training a classifier with the feature alone
and evaluating 10-fold cross validation accuracy on the
training dataset.

– We then grouped these accuracy numbers into 4 subsets.
The first set contained all the accuracy numbers for features
written using the control data. We call this S0. The second
set contained accuracy numbers for features written on
top of no-noise data S1, the third set was table noise S2

and the fourth set was key noise S3. (Note that all feature
values were calculated on the control dataset.)

– We then performed the two-sample t-test between
three pairs (S0, S1), (S0, S2) and (S0,S3). The two sample
t-test returns a test decision for the null hypothesis that
the data in vectors S0 and Si comes from independent
random samples from normal distributions with equal
means and equal but unknown variances. The alternative
hypothesis is that the data comes from populations with
unequal means. The result is a logical value.
– If Result = True, it indicates the rejection of the null

hypothesis at the α significance level.
– If Result = False, it indicates a failure to reject the null

hypothesis at the α significance level

In the table VII-A, each row presents the results of tests
performed for one of the 5 datasets. We present the p−value, as
well as the lower and upper bounds of the confidence interval.
If the result is True, it implies that there was a difference in
the feature accuracies. We employ a total of 15 tests across
different datasets.

Key findings

– For 7 out of 15 comparisons, we found no significant
difference between the accuracy of features developed on
the control dataset vs. those developed on some version
of the synthesized data; that is, the result of the test was
False.

– When we examined the confidence intervals for the
remaining 8 tests, we found that for half, the mean of
accuracies for features written over synthesized data was
higher then for those written on the control dataset.

Overall, we can say that there is no statistically significant
difference between the accuracy scores of data scientists with
control data and data scientists with synthesized data. This
confirms our belief that scientists can be as productive with
synthesized data as they can with control data. It remains to
be seen how the level of noise in the synthesized data affects
the accuracy.

B. Qualitative Findings

Finally, we consider the subjective feedback provided to us
by the data scientists. In particular, we observed the questions
different data scientists asked to determine whether they were
confused by the data they were provided.

A majority of the questions dealt with technical issues (such
as with Feature Factory or the experimental setup) that were
unrelated to the synthesized data. Many subjects were also
unhappy that they did not have access to the target column’s
data. Although we purposefully designed the experiment in
this way, so that users could focus on writing features without
knowing the answers, we may consider allowing data scientists
to see the target column of the training data in the future, in
order to mimic a typical workflow more closely.

Some data scientists were confused about the relationships
that existed between the tables. One user in particular did
not understand how two columns of the bond table could be
foreign keys to the atom table in the Mutagenesis dataset
(Figure 8). Other users defaulted to writing features from the
target table only. We explicitly encouraged the data scientists
to join the tables to explore the entire dataset.

Only 1 question was related to the actual values in the
dataset. A data scientist in group 3 indicated that the ages
column in the Users table of the Airbnb dataset (Figure 9)
had unrealistic ages. This data was synthesized with table noise.
However, upon closer inspection, it appears that the original
data for Airbnb also had unrealistic data in the ages column
(max age was 2004). The SDV synthesized data within the
correct bounds when compared to the control data.

However, we did realize that the SDV’s bounds will not
always be correct if we are synthesizing children from a noised
parent table. This is because the parent holds the min and
max values of their children’s columns. If the parent is noised,
then the min and max may represent unrealistic data.

Ultimately, we found that the SDV successfully modeled each
of the relational datasets, and used the generative models to
synthesize data that data scientists could realistically work
with.
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